帳號:guest(18.226.165.247)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Richard Chisale Kammayani
作者(英文):Richard Chisale Kammayani
論文名稱:Fifteen Years Nitrogen Footprint Trend of Agriculture Products for Malawi
論文名稱(英文):Fifteen Years Nitrogen Footprint Trend of Agriculture Products for Malawi
指導教授(英文):Ming-Chien Su
口試委員(英文):Shun-Hsing Chuang
Wei Chin Chang
Nien-Hsin Kao
Ming-Chien Su
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:610854023
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:96
關鍵詞(英文):Nitrogen FootprintAgriculture ProductionN-CalculatorNitrogen managementMalawi
相關次數:
  • 推薦推薦:0
  • 點閱點閱:568
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
We present the second country-specific N footprint of a developing country in the SSA region: Malawi. Agriculture is predominantly the main cause of N footprint in most developing countries and Malawi is not exceptional. N-footprint studies are of tremendous relevance to both accomplish sustainable environment and even improve agriculture N management which guarantees adequate output. Unfortunately, there are very limited studies in Malawi, which attempt to identify, estimate, and contribute toward N management. To fill the gap, the paper presents the first country-specific N footprint of Malawi using the novel web-based tool called N-calculator. We estimated the N footprint from agriculture products in Malawi from 2002 to 2016. Top-down calculations were also employed to estimate the total N-input (Synthetic N fertilizer, biological N fixation, animal N manure, and atmospheric N deposition) for Malawi. The crop product considered in this study includes maize, rice, starchy roots, fruits, and vegetables while livestock include chicken (eggs as a separate category), cattle (beef and dairy), and small ruminants (goats, pigs). The results reviewed that rice and maize have the highest virtual N factor in the category of the crop, while beef and milk are the highest in the animal product category. The average food N footprint of Malawi was 14.67 Kg N/cap-1/yr-1 whereby 12.12 Kg N/cap-1/yr-1 was a virtual N footprint and 2.55 Kg N/cap-1/yr-1 was consumption footprint. The food products' N footprint results of Malawi were compared to the findings of other related studies across the globe. Finally, there is an urgent need for proper policy interventions which target improvement of N use efficiency and reduction of reactive N escape since Malawi agriculture system N problem is dualistic: increasing reactive N escape and insufficient N input. Further studies are therefore required to assess how international trade and energy consumption influence the perturbation of the nitrogen budget in Malawi and link the footprint to the associated environmental effects.
TABLE OF CONTENTS
ACKNOWLEDGEMENT .......................................................................... iii
ABSTRACT .................................................................................. v
LIST OF ACRONYMS AND ABBREVIATIONS .................................................... vii
TABLE OF CONTENTS ....................................................................... ix
LIST OF FIGURES .......................................................................... xi
LIST OF TABLES ........................................................................... xiii
CHAPTER 1 INTRODUCTION .................................................................. 1
1.1 Background ......................................................................... 1
1.2 Motivation .......................................................................... 5
1.3 Research questions and objectives .................................................... 6
1.4 Research Process ..................................................................... 6
2. CHAPTER 2 LITERATURE REVIEW ............................................................ 9
2.1 The Threat of Reactive Nitrogen. ...................................................... 9
2.1.1 Planetary Boundary and Nitrogen. .................................................... 13
2.2 Agriculture development and Nitrogen usage in Malawi ................................... 17
2.2.1 Constraints of agriculture system in Malawi ........................................ 20
2.3 Nitrogen Footprint Approaches ........................................................ 22
2.4 Application of N-Calculator model in previous studies ................................ 30
3. CHAPTER 3 STUDY AREA & METHODS ...................................................... 37
3.1 Study Area: Malawi ................................................................... 37
3.2 Data Collection & Analysis............................................................. 39
3.2.1 Top-down calculation of Nitrogen input in Agriculture production .................... 41
3.2.2 Virtual Nitrogen factor and Nitrogen Footprint. ..................................... 44
3.2.3 Comparison of N input and N losses. ................................................. 50
3.2.4 Data Analysis ........................................................................ 51
4. CHAPTER 4 RESULTS & DISCUSSIONS ........................................................ 53
4.1 Top-down calculation of Nitrogen input in agriculture land ........................... 53
4.2 Nitrogen Footprint and Virtual Nitrogen Factor ...................................... 57
4.3 Agriculture N input and N footprint of Malawi. ...................................... 59
4.4 Results of regression model ........................................................... 61
4.4.1 Malawi N footprint, urbanization, and population trend. ............................ 61
x
4.4.2 Malawi N footprint, HIV prevalence, Infant Mortality & GDP. .......................... 63
4.4.3 Characteristics of Malawi Nitrogen Footprint. ...................................... 65
4.5 Comparison of Malawi N footprint and Virtual N factors to other N-footprints. .... 69
5. CHAPTER 5 CONCLUSION AND SUGGESTIONS .................................................... 75
5.1 Conclusion ............................................................................ 75
5.2 Suggested N management initiatives based on the Malawi N-calculator results. .... 77
REFERENCE
Asare, D. K., Ayeh, E. O., Amenorpe, G. (2009). Response of Rain fed Cassava to Methods of Application of Fertilizer-Nitrogen in a Coastal Savannah Environment of Ghana. World J. of Agri. Sci. 3, 323-327.
Birch M B L, G. B. M., Moomaw W R, Doering O and Reeling C J (2011). Why metrics matter: evaluating policy choices for reactive nitrogen in the Chesapeake Bay Watershed. In: ACS Publications.
Bleeker, A., Sutton, M., Winiarter, W., & Leip, A. (2013). Economy-Wide Nitrogen Balances and Indicators: Concept and Methodology. OECD, Environment Directorate, Environment Policy Committee, Working Party on EnvironmentalInformation.
Bodirsky B.L., Popp, A., Lotze-Campen, H., Dietrich, J. P., Rolinski, S., Weindl, I., . . . Stevanovic, M. (2014). Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858. doi:https://doi.org/10.1038/ncomms4858
Bouwman et al. (2012). Correction for Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proceedings of the National Academy of Sciences, 110(52), 21195-21195. doi:10.1073/pnas.1206191109
Chagunda M. G., Gondwe T. N., Banda L., & P., M. (2008). Smallholder Dairy Production in Malawi: Current Status and Future Solutions.
Chen M., & T.E., G. (2016). A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Chang. 36, 139–152.
Chen, Z., Xu, C., Ji, L., Feng, J., Li, F., Zhou, X., & Fang, F. (2020). Effects of multi-cropping system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China. Global Ecology and Conservation, 22. doi:10.1016/j.gecco.2019.e00895
Clottey, S. J. A. (1985). Manual for the slaughter of small ruminants in developing countries / by St. John A. Clottey. Rome: FAO.Council, N. R. (2003). Air emissions from animal feeding operations.
Ecker, O., Benson, T., & Gilbert, R. (2019). Are Malawian Diets Changing? An Assessment of Nutrient Consumption and Dietary Patterns using Household-level Evidence from 2010/11 and 2016/17. doi:10.2499/p15738coll2.133522
Elrys A. S, S., R., I., A. A., Liu Z., Z., C., & J., Z. (2019). Budgeting nitrogen flows and the food nitrogen footprint of Egypt during the past half century: Challenges and opportunities. Environ Int, 130, 104895. doi:10.1016/j.envint.2019.06.005
Elrys A. S., M., D. E., Ali, A., B., Z. J., Cai, Z. C., & Cheng, Y. (2020). Sub-Saharan Africa's food nitrogen and phosphorus footprints: A scenario analysis for 2050. Science of the Total Environment, 752, 141964. doi:10.1016/j.scitotenv.2020.141964
FAO. (2003a). Addressing the Impact of HIV/AIDS on Ministries of Agriculture:Focus on Eastern and Southern Africa prepared by Daphne Topouzis.
FAO. (2003b). WTO Agreement on Agriculture: The Implementation Experience - Developing Country Case Studies. (FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2003).
FAO. (2011). The methodology of the FAO study: “Global Food Losses and Food Waste extent, causes and prevention”- FAO, 2011 (SIK report No. 857).
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., , Sheppard, L. J., . . . Voss, M. (2013). The global nitrogen cycle in the twenty-first century. Phil. Trans. Royal Soc., B 368, 20130164.
Galloway J. N., Aber J. D, Erisman J. W, Seitzinger S. P, Howarth R. W, C. E. B., & J, C. B. (2003). The Nitrogen Cascade. The nitrogen cascade BioScience 53, 53, 341–356.
Galloway, J. N., Winiwarter, W., Leip, A., Leach, A. M., Bleeker, A., & Erisman, J. W. (2014). Nitrogen footprints: past, present and future. Environmental Research Letters, 9(11). doi:10.1088/1748-9326/9/11/115003
GOM. (2012). Guide to Crop Production GAP 2012.
GOM. (2013). Situation_of_Urbanisation_in_Malawi_repo.pdf.
GOM. (2016a). The Local Governance Performance Index (LGPI) in Malawi: Selected Findings on Land. Retrieved from
GoM. (2016b). Malawi Growth and Development Strategy (mgds) iiReview and Country Situation Analysis Report.
Hossain, M. F., White, S. K., Elahi, S. F., Sultana, N., Choudhury, M. H. K., Alam, Q. K., . . . Gaunt, J. L. (2005). The efficiency of nitrogen fertiliser for rice in Bangladeshi farmers’ fields. Field Crops Research, 93(1), 94-107. doi:10.1016/j.fcr.2004.09.017
Hutton, M. O., Leach, A. M., Leip, A., Galloway, J. N., Bekunda, M., Sullivan, C., & Lesschen, J. P. (2017). Toward a nitrogen footprint calculator for Tanzania. Environmental Research Letters, 12(3). doi:10.1088/1748-9326/aa5c42
Kanter, D. M., Denise & Ravishankara, A.R. & Daniel, John & Portmann, Robert & Grabiel, Peter & Moomaw, William & Galloway, James. . (2013). A post-Kyoto partner: Considering the stratospheric ozone regime as a tool to manage nitrous oxide. Proceedings of the National Academy of Sciences of the United States of America., 110. 10.1073/pnas.1222231110. .
Kingori, A. M., Wachira, A. M., & Tuitoek, J. K. (2010). Indigenous Chicken Production in Kenya: A Review. International Journal of Poultry Science 9, 309-316.
Kling, H. J., Mugidde, R. M., & Hecky, R. E. (2001). Recent changes in the phytoplanktoncommunity of Lake Victoria in response to eutrophication. In: Munawar, M., Hecky,
R.E. (Eds.)The Great Lakes of the World (GLOW). Food-Web, Health and Integrity., 47–65.
Kombiok. J., & S., B. ( 2013). Tillage depth effects on nodulation, nitrogen fixation and yield of three soybean varieties in the Northern Savanna zone of Ghana Afr. . Agric. Res. , 8, 2340–2345.
Krupnik T.J., S. J., Ladha J.K., Paine M.J. and van Kessel C. (2004). An Assessment of Fertilizer Nitrogen Recovery Efficiency by Grain Crops Across Scales. ( Agriculture and the Nitrogen Cycle, The Scientific Committee Problems of the Environment), 193-207.
Lassaletta L, Gilles B., G, B., Anglade J., & G., J. (2014). 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters, 9(10). doi:10.1088/1748-9326/9/10/105011
Latif, M. G. A., Abdelsalam, M. M., & Abd El-Aziz, N. M. (1987). Meat production characteristics of Egyptian Baladi and Angora goats. (Meat Science 20, ), 211-216.
Le Que´ re´ , C. ( 2010.). Trends in the land and ocean carbon uptake. Current Opinion in Environmental Sustainability 2,, 219–224.
Leach A. M., Galloway, J. N., Bleeker, A., Erisman, J. W., Kohn, R., & Kitzes, J. (2012). A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development, 1(1), 40-66. doi:10.1016/j.envdev.2011.12.005
Leach, A. M., Emery, K. A., Gephart, J., Davis, K. F., Erisman, J. W., Leip, A., . . . Galloway, J. N. (2016). Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy, 61, 213-223. doi:10.1016/j.foodpol.2016.03.006
Leach, A. M., Majidi, A. N., Galloway, J. N., & Greene, A. J. (2013). Toward Institutional Sustainability: A Nitrogen Footprint Model for a University. Sustainability: The Journal of Record, 6(4), 211-219. doi:10.1089/sus.2013.9852
Leip, A., Leach, A., Musinguzi, P., Tumwesigye, T., Olupot, G., Stephen Tenywa, J., . . . Galloway, J. (2014). Nitrogen-neutrality: a step towards sustainability. Environmental Research Letters, 9(11). doi:10.1088/1748-9326/9/11/115001
Liang, X., Leach, A. M., Galloway, J. N., Gu, B., Lam, S. K., & Chen, D. (2016). Beef and coal are key drivers of Australia's high nitrogen footprint. Sci Rep, 6, 39644. doi:10.1038/srep39644
Liang, X., Ng, E. L., Lam, S. K., Castner, E. A., Leach, A. M., Gu, B., . . . Chen, D. (2018). The nitrogen footprint for an Australian university: Institutional change for corporate sustainability. Journal of Cleaner Production, 197, 534-541. doi:10.1016/j.jclepro.2018.06.050
Maganga, A. M., & Malakini, M. (2015). Agrarian Impact of Climate Change in Malawi: A Quantile Ricardian Analysis. Retrieved from
Malawi, G. o. (7th December, 2004). Policy Document on Livestock In Malawi. Malawi Government publication
Manda M. A. Z. (2009). Water and sanitation in urban Malawi: Can the Millennium Development Goals be met? A study of informal settlements in three cities. Working Paper Series Theme: Water - 7.
Masso, C., Baijukya, F., Ebanyat, P., Bouaziz, S., Wendt, J., Bekunda, M., & Vanlauwe, B. (2017). Dilemma of nitrogen management for future food security in sub-Saharan Africa – a review. Soil Research, 55(6). doi:10.1071/sr16332
Masso C., Baijukya, F., Ebanyat, P., Bouaziz, S., Wendt, J., Bekunda, M., & Vanlauwe, B. (2017). Dilemma of nitrogen management for future food security in sub-Saharan Africa – a review. . Soil Research,, 55(6),425. doi:doi:10.1071/sr16332
Montagnac, J. A., Davis, C. R., Tanumihardjo, S. A. (2009). Nutritional Value of Cassava for
UseasaStaple Food and Recent Advances for Improvement. , 181-194.
Mutegi J., Kabambe V., Zingore S., Harawa R., & Wairegi L. (2015). The Fertilizer Reccomendation Issues in Malawi: Gaps, Challenges, Opportunities and Guidelines: Soil Health Consortium of Malawi.
Nankwenya, B., Kaunda, E., & Chimatiro, S. (2017). The Demand for Fish Products in Malawi: An Almost Ideal Demand System Estimation. Journal of Economics and Sustainable Development.
Oita, A., Wirasenjaya, F., Liu, J., Webeck, E., & Matsubae, K. (2020). Trends in the food nitrogen and phosphorus footprints for Asia's giants: China, India, and Japan. Resources, Conservation and Recycling, 157. doi:10.1016/j.resconrec.2020.104752
Otu M. K., Ramlal P., Wilkinson P., Hall R. I., & Hecky R. E. (2011). Paleolimnological evidence of the effects of recent cultural eutrophication during the last 200years in Lake Malawi, East Africa. Journal of Great Lakes Research, 37, 61-74. doi:10.1016/j.jglr.2010.09.009
Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc Lond B Biol Sci, 365(1554), 3065-3081. doi:10.1098/rstb.2010.0126
Pierer, M., Winiwarter, W., Leach, A. M., & Galloway, J. N. (2014). The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy, 49, 128-136. doi:10.1016/j.foodpol.2014.07.004
Rockström, J., Steffen, W., & Noone, K. e. a. (2009). A safe operating space for humanity. . Nature 461, 472–475. doi: https://doi.org/10.1038/461472a
Sanchez, A. P., Shepherd, K. D., J., S. M., Place, F. M., Buresh, R. J., & N., I. A. (1997). Soil fertility replenishment in Africa: An Investment in natural resource Capital.
Shafshak, S. E., Hammam, G. Y., Mehasen, S. A. S., & Aish, S. (2009). Use efficiency of mineral and organic nitrogen in six maize genotypes. 199-213.
Shibata H., R., C. L., M., L. A., & N., G. J. (2014). First approach to the Japanese nitrogen footprint model to predict the loss of nitrogen to the environment. Environmental Research Letters, 9(11). doi:10.1088/1748-9326/9/11/115013
Singini, W., Kaunda, E., Kasulo, V., & Jere, W. (2012). Modelling and Forecasting Small Haplochromine
Species (Kambuzi) Production in Malawi – A Stochastic Model Approach. . International Journal ofScientific & Technology Research.
Springmann, M., Clark, M., Mason-D'Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., . . . Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562(7728), 519-525. doi:10.1038/s41586-018-0594-0
Steffen, W., Richardson, K., Rockstrom, J., Cornell, S. E., Fetzer, I., Bennett, E. M., . . . Sorlin, S. (2015). Sustainability. Planetary boundaries: guiding human development on a changing planet. Science, 347(6223), 1259855. doi:10.1126/science.1259855
Stoorvogel J J, S. E. M. A. ( 1990 ). Assessment of soil nutrient depletion in sub-Saharan Africa 1983-2000. , D.L.O. Wind and Starring Center for Integrated Land, Soil, and Water Research. Retrieved from https://library.wur.nl/isric/fulltext/isricu_i25329_001.pdf
Su M. C., Shibata H., James N Galloway J. N., & M, L. A. (Accepted, June, 2021. ). The Taiwanese Nitrogen Footprint: Trends and Comparisons with Other Regions special focus collection in Environmental Research Letters (erl.iop.org)(Environmental Footprint Tools for Sustainability).
Summers, j. d., Slinger, s. j., Sibbald, i. r., & Pepper, w. f. (1964). Influence ofProtein and Energy on Growth and Protein Utilization in the Growing Chicken.
Tchale H. J. (2009). The efficiency of smallholder agriculture in Malawi. African Journal of Agricultural
Resource Economics, 3(311-2016-5498), 101-121.
Toomsan, B., McDonald, J. E., V., L., & E., G. K. (1995). Nitrogen fixation by groundnut and soyabean and residual nitrogen benefits to rice in farmers' fields in Northeast Thailand. 45-46.
UNEP., & WHRC. (2007). Reactive Nitrogen in the Environment: Too Much or Too Little of a Good Thing. . United Nations Environment Programme,.
UNAIDS (2021). https://aidsinfo.unaids.org/
USDA. (2010). US Department of agriculture and US Department ofhealth and human services Dietary Guidelines for Americans,2010 7th edn. (Washington, DC: US Government PrintingOffice) December 2010.
Wanzala, M. (2011). The Abuja declaration on fertilizers for an African green revolution – status of implementation at regional and national levels.’
Westermann, D. T., Porter, L. K., & O'Deen, W. A. (1985). Nitrogen Partitioning and Mobilization Patterns in Bean Plants. VOL. 25, MARCH-APRIL 1985(CROP SCIENCE).
WHO. ( 2007). World Health Organization. Protein and amino acid requirements in human nutrition. WHO Technical Report SeriesNumber 935.
World Bank (2021).World development indicators. https://databank.worldbank.org/source/world-development-indicators
N. S. O., & Macro, I. (2011 ). Malawi Demographic and Health Survey 2010. Zomba, Malawi, and Calverton, Maryland, USA: NSO and ICF Macro.

(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *